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ABSTRACT
The genetic analysis of characters that are best considered as functions of some independent and

continuous variable, such as age, can be a complicated matter, and a simple and efficient procedure is
desirable. Three methods are common in the literature: random regression, orthogonal polynomial
approximation, and character process models. The goals of this article are (i) to clarify the relationships
between these methods; (ii) to develop a general extension of the character process model that relaxes
correlation stationarity, its most stringent assumption; and (iii) to compare and contrast the techniques
and evaluate their performance across a range of actual and simulated data. We find that the character
process model, as described in 1999 by Pletcher and Geyer, is the most successful method of analysis for
the range of data examined in this study. It provides a reasonable description of a wide range of different
covariance structures, and it results in the best models for actual data. Our analysis suggests genetic
variance for Drosophila mortality declines with age, while genetic variance is constant at all ages for
reproductive output. For growth in beef cattle, however, genetic variance increases linearly from birth,
and genetic correlations are high across all observed ages.

Asimple and efficient procedure for the genetic anal- 1998). Third, the character process model was recently
proposed by Pletcher and Geyer (1999) and is basedysis of characters that change as a function of age

(or some other independent and continuous variable) on theories of stochastic processes. We develop and
consider a general extension of the process model tois desirable for researchers in several fields of biology

and genetics. Plant and animal breeders are often faced take advantage of new methods for estimating compli-
cated correlation structures. Each of these methods haswith the genetic analysis of “repeated measures” data,

such as lactation in dairy cows or growth rates in impor- been implemented in relatively easy to use computer
software packages, and they are freely available.tant agricultural species. Biologists interested in the

evolution of life histories study the genetic basis of The aim of this article is to compare and contrast
random regression, orthogonal polynomials, and char-age-specific fitness components, such as survival or re-

productive output, while evolutionary ecologists often acter process models and evaluate their performance.
We focus first on examining the underlying assumptionsexamine the genetic relationship between values of a

single character expressed over a continuous range of of the three methods, while emphasizing fundamental
similarities and differences when appropriate. Next, weenvironmental variables.

Recent conceptual and computational advancements explore a variety of simulated data sets and describe the
types of covariance structures (genetic, environmental,have made the genetic analysis of such function-valued
and otherwise) accommodated by each method. Last,traits readily accessible. Three methods have been ad-
using empirical data on age-specific mortality and repro-vanced in the literature. First, random regression mod-
ductive output in the fruit fly Drosophila melanogaster andels have been widely used for the analysis of longitudinal
on growth in beef cattle, we evaluate the ability of eachdata in the traditional statistical literature (Diggle et
model to adequately fit empirical data.al. 1994) and recently have been applied in the animal

breeding context (Jamrozik et al. 1997b). Second, the
use of orthogonal polynomials to approximate covari- THE GENETIC ANALYSIS OF
ance matrices was initially suggested by Kirkpatrick FUNCTION-VALUED TRAITS
and Heckman (1989) and is closely related to the ran-

Detailed descriptions of the extension of classicaldom regression models (Meyer and Hill 1997; Meyer
quantitative genetics to the analysis of function-valued
traits is given in Kirkpatrick and Heckman (1989)
and Pletcher and Geyer (1999). In short, the method
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and continuous variable. Although any continuous vari- acter process model (Pletcher and Geyer 1999). All
three methods are based on likelihood estimation—able is acceptable (e.g., the level of some environmental

factor), the most common is age, and all of the examples although the orthogonal polynomial approach was orig-
inally published as a least squares estimation (Kirkpat-in this article focus on characters that change with age.

Further, it is assumed that the character values at each rick et al. 1990).
Random regression: Random regression (RR) modelsage constitute a multivariate normal distribution on

some scale. employ parametric forms for the unobserved functions
in (1). Although traditionally a parametric mean curveAs with traditional quantitative genetics, it is assumed

that the observed phenotypic trajectory of the character is often used to estimate m(t), this is not essential. How-
ever, the individual deviations from this curve [i.e., theis random and influenced by one or more unobservable

factors. In the simplest case one might consider the g(t) and e(t)] are assumed to be parametric functions
of time, and polynomials are often used. For example,additive contribution of many genes along with unpre-

dictable environmental effects. More complicated mod- the age-dependent deviations from the population
mean due to an individual’s genotype might be linearels involving interactions among different genes or spe-

cific environmental effects (e.g., maternal effects) are in time, such that
straightforward, although computational difficulties will

g(t) 5 a1 1 a2t,likely arise. For the additive model, we assume the ob-
served phenotype can be decomposed as where the ai are random genetic regression coefficients.

The regression coefficients are unobservable randomX(t) 5 m(t) 1 g(t) 1 e(t) 1 ε, (1)
effects; they have a specific value for each individual;

where m(t) is a nonrandom function, the genotypic and they are assumed to be multivariate normally distrib-
mean function of X(t), and g(t) and e(t) are Gaussian uted. The environmental deviations, e(t), are assumed
random functions, which are independent of one an- independent of the genetic effects, and they are mod-
other and have an expected value of zero at each age eled similarly.
(Kirkpatrick and Heckman 1989; Pletcher and Genetic and environmental covariances as a function
Geyer 1999). They represent the age-dependent ge- of age are determined by the variances and covariances
netic and environmental deviations, respectively. In this among the regression coefficients. Following the exam-
context, e(t) is often referred to as the permanent envi- ple presented above, the genetic covariance between
ronmental effect and ε is the residual variation—-ε is ages s and t is
assumed normally distributed with constant and un-

G(s, t) 5 Cov(g(s), g(t))known variance over time. The original development
of the character process (CP) model did not include a 5 Cov(a1 1 a2s, a1 1 a2t)
residual variance term (Pletcher and Geyer 1999).

5 Var(a1) 1 (s 1 t)Cov(a1, a2) 1 st Var(a2).Recently, however, we have found that data sets that
exhibit a great deal of measurement error support a (3)
residual variance.

The primary objective in these models is to chooseThe goal of the analysis is to decompose the observed
the most appropriate parametric functions for the ge-variation in X(t) into its genetic and environmental con-
netic and the permanent environmental deviations. Intributions by estimating covariance functions for g(t) and
many cases the parametric functions are nested ande(t). A covariance function, r(s, t), is a bivariate continu-
likelihood-ratio testing can be used. Since this involvesous function that describes the covariance between any
testing the significance of parameters on the boundarytwo ages, r(s, t) 5 Cov{ X (s), X (t)}. By the independence
of their feasible parameter space, the test statistics areof g(t) and e(t), the phenotypic covariance function of
often mixtures of chi-square distributions (Stram andX(t) is given by P(s, t) as
Lee 1994).

P(s, t) 5 G(s, t) 1 E(s, t), (2) Character process model: In contrast to the RR mod-
els, the character process model does not attempt towhere G(s, t) is the genetic covariance function, and E(s, t)
model the forms of the g(t) or e(t) functions. Instead,the environmental covariance function, which also includes
parametric models for the covariance functions them-the residual variance. These functions are estimable via
selves [i.e., G(s, t) and E(s, t) in Equation 2] are themaximum likelihood (ML) or restricted maximum like-
target of analysis (Pletcher and Geyer 1999).lihood (REML) when there are data on individuals of

Again taking the genetic covariance function as anvarious relatedness (Lynch and Walsh 1998; Pletcher
example, the covariance function can be decomposedand Geyer 1999).
intoThere have been at least three different methods sug-

gested for estimating the desired covariance functions: G(s, t) 5 vG(s)vG(t)rG(|s 2 t|), (4)
orthogonal polynomials (Kirkpatrick and Heckman
1989), random regression (Meyer 1998), and the char- where vG(t)2 describes how the genetic variance changes
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with age and rG(|s 2 t|) describes the genetic correlation G(s, t) 5 o
m

i50
o
m

j50

φi(s)φj(t)kij, (6)
between two ages. There are no restrictions on the form
of vG(·), and it is often modeled using simple polynomi- where m determines the number of polynomial terms
als (linear, quadratic, etc.). As presented in Pletcher used in the model, kij are the m(m 1 1)/2 unknown
and Geyer (1999), the character process model assumes parameters to be estimated (the coefficients of the lin-
correlation stationarity; i.e., the correlation between two ear combination), and φi is the ith Legendre polynomial
ages is assumed to be a function only of the time distance (Kirkpatrick et al. 1990). The environmental covari-
(|s 2 t|) between them. Although strictly speaking this ance function is modeled similarly. Meyer and Hill
assumption is almost surely wrong, experience suggests (1997) present a method for estimating covariance func-
that it is expected to provide a reasonable approxima- tions such as (6) directly from the data using REML.
tion in most cases (Pletcher and Geyer 1999). The As originally presented, the orthogonal polynomial
benefit of correlation stationarity is that it allows numer- approach is similar in spirit to the CP model, and both
ous choices for r(·), all of which satisfy several theoreti- differ in principle from the RR approach. In the RR
cal requirements (Pletcher and Geyer 1999). methods, the primary model development occurs at the

We suggest an extension of the character process level of individual deviations (Equation 1). The analyst
model for nonstationary correlations using a method begins by considering the behavior of individual age-
proposed by Nunez-Anton (1998) and Nunez-Anton specific deviations. The resulting covariance structure
and Zimmerman (2000) in what they term structured is a consequence of these deviations. For the CP and
antedependence models. The idea is to implement a OP models, the situation is reversed. The analyst begins
nonlinear transformation upon the time axis, f(t), such by considering the structure of the covariance matrix
that correlation stationarity holds on the transformed (Equation 2), and the shapes of the individual devia-
scale—on the original scale the correlation is nonsta- tions are a consequence of this structure. In some cases
tionary. The correlation function is then defined as it may be possible to expose a duality between the two, as
r(s, t) 5 r(|f (s) 2 f (t)|), and the functions suggested Meyer (1998) has done for certain RR and OP models.
by Pletcher and Geyer (1999) remain valid. Ideally When the data are collected at equally spaced intervals,
the transformation function should contain a small CP models with a constant variance and an absolute
number of parameters with interpretable effects. exponential correlation (r(s, t) 5 uc

|s2t|) function are
Nunez-Anton and Zimmerman (2000) suggest a Box- equivalent to an autoregressive model of order 1. At

Cox power transformation such that present, however, analytical difficulties preclude more
general results for the character process models.

f l(t) 5




(tl 2 1)/l if l ? 0

log t if l 5 0, (5)
EXAMPLES AND ANALYSES

where l is a parameter to be estimated. Considering
Estimation procedures: All models were estimated us-an absolute exponential correlation function, r(s, t) 5

ing REML. In all cases a nonparametric mean functionu|f(s)2f(t)|, the correlations on the subdiagonals are mono-
was used (i.e., a separate mean was fitted for each distincttone increasing if l , 1 or monotone decreasing if l .
age in the data), which ensures a consistent estimate of1. If l 5 1 the nonstationary model reduces to a station-
the covariance structure (Diggle et al. 1994). Compari-ary one. Thus, a likelihood-ratio test of the null hypothe-
son among models was based on the Bayesian informa-sis H0: l 5 1.0 can be used to quantitatively examine
tion criterion (BIC; Schwarz 1978), which provides forthe extent of nonstationarity in the data. Additional
likelihood-based comparison among nonnested mod-flexibility in the nonstationary pattern might be
els. BIC isachieved by considering more than one parameter l.

log-likelihood 2 1⁄2 3 number of parameters in the model 3 log n*,For example, one might incorporate distinct li for dif-
ferent values of |s 2 t|, which is equivalent to a separate where n* 5 n 2 p when using REML with n the number
li for each subdiagonal of the covariance structure. of observations in the data set and p the number of

Orthogonal polynomials: Kirkpatrick and Heckman fixed effects. The model selected is the one that maxi-
(1989) originally presented the use of orthogonal poly- mizes the criterion.
nomials (OPs) as a nonparametric way of “smoothing” To determine the best-fitting model under each tech-
previously estimated covariance matrices. This was the nique, a large number of models were fit to each data
first attempt to formalize the estimation of covariance set. For the character process method, .100 different
functions in a genetic context. As with the CP model, models (i.e., different combinations of polynomial vari-
the shapes of the individual age-dependent deviations ance functions and stationary and nonstationary correla-
were not considered, and models for the structure of tion functions) were investigated, and the best model
the variance-covariance matrix itself were the focus of was chosen according to the BIC criterion. We chose
attention. Kirkpatrick and Heckman (1989) suggest to examine a large number of CP models for reasons

of thoroughness. The CP models are relatively new,that the genetic covariance function be represented as
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and the behavior of these models is not well known. In with genetic variance function identical to that in the
practice, such an exhaustive search is not required, as stationary CP data, but with an arbitrary nonstationary
standard model selection procedures (e.g., sequential correlation structure (Figure 1B). The environmental
addition of polynomial terms to the variance function) covariance was assumed identical to that in the station-
result in identical conclusions (results not presented). ary CP data. This data set is the nonstationary CP data.
For both random regression and orthogonal polynomial The third data set was simulated according to a ran-
methods, the appropriate polynomials of increasing de- dom regression model with linear deviations for both
gree were fit until an increase in degree no longer the genetic and environmental parts. The chosen pa-
resulted in a significant increase in the log-likelihood rameter values resulted in genetic and environmental
at the a 5 0.05 level (Meyer and Hill 1997). We find correlations that remained quite high over all ages in
that a reasonable approach to model selection requires the data (Figure 1C).
on the order of 5–10 model fits for each method. The last data set that we present was simulated ac-

Estimates of the covariance structure based on ran- cording to an OP model, with quadratic Legendre poly-
dom regression and orthogonal polynomial methods nomials for the genetic and environmental parts (i.e.,
were obtained using the software package ASREML m 5 2 in Equation 6). The shapes of the covariance
(Gilmour et al. 1997), while estimates of the character functions were rather undulating, as is expected from
process model (and certain orthogonal polynomial functions based on orthogonal polynomials. Parameter
models) were obtained using computer software devel- values were chosen such that the environmental correla-
oped by one of the authors (S. Pletcher; C code and tion remained quite high over time while the genetic
executable files freely available). A series of exploratory correlation was highly nonstationary (Figure 1D).
analyses were conducted to ensure the two software To compare the fit of the models we calculated good-
packages produced comparable log-likelihoods. A small ness-of-fit statistics for the estimated variance and corre-
number of covariance structures could be fitted by both lation functions under each model with respect to the
packages (models of constant variance and correlation simulated structure. Goodness of fit was quantified by
across ages, and small orthogonal polynomial models) the concordance correlation coefficient, rc, described
and these structures were fitted to several data sets. In by Vonesh et al. (1996; see appendix). The possible
all cases, identical log-likelihoods were reported by each values of rc are in the range 21 # rc # 1, with a perfect
package. fit corresponding to a value of 1 and a lack of fit to

Simulated data: Many data sets were simulated ac- values #0.
cording to various covariance structures from CP, RR, Empirical data: Drosophila reproduction and mortality:
and OP models. All were built assuming a standard sire

Age-specific measurements of reproduction and mortal-
design (i.e., groups of half-sibs) in which 12 offspring

ity rates were obtained from 56 different recombinantfrom each of 70 sires were measured at five different
inbred (RI) lines of D. melanogaster, which are expectedages (Lynch and Walsh 1998). Under such a design,
to exhibit genetically based variation in longevity andthe estimated between-sire covariance function is di-
reproduction (J. W. Curtsinger and A. A. Khazaeli,rectly proportional to the genetic covariance function.
unpublished results). Age-specific measures of mortalityThe environmental covariance function and residual
and average female reproductive output were collectederror are estimated based on the within-sire and the
simultaneously from two replicate cohorts for each ofwithin-animal variation. We present the results of four
56 RI lines. Deaths were observed every day, while eggrepresentative data sets. Because the magnitudes of the
counts were made every other day. For both mortalityvariance and covariances were different among the sim-
and reproduction the data were pooled into 11 5-dayulations, we set the residual variance for all simulations
intervals for analysis. Mortality rates were log trans-to z10% of the total variance at age 0.
formed and reproductive measures were square-rootThe first data set was simulated according to a station-
transformed to insure the age-specific measures wereary CP covariance structure, the purpose of which was
normally distributed.to assess the behavior of RR and OP models when the

Growth in beef cattle: These data come from the Wo-genetic correlation decreases to zero within the range
kalup selection experiment in Western Australia andof the data. The genetic covariance function was com-
correspond to January weights of 436 beef cows fromposed of a quadratic variance [i.e., a quadratic v2(·)
77 sires. Weights were recorded between 19 and 82from Equation 4] and “normal” correlation (r(ti, tj) 5
months of age, with up to six records per cow. Analysesexp(20.8(ti 2 tj)2)) (Figure 1A). The environmental
were carried out within 83 contemporary groups (year-covariance function was composed of a linear variance
paddock-age of weighing subclasses), fitted as fixed ef-and “Cauchy” correlation function (r(ti, tj) 5 1/(1 1
fects. Additional information, along with access to the0.05(ti 2 tj)2)) (Pletcher and Geyer 1999). We refer
data, can be obtained from Dr. Karin Meyer’s web pageto this data set as the stationary CP data.
at the Animal Genetics unit of the University of NewTo examine a well-behaved covariance function with a

somewhat nonstationary correlation, we simulated data England, Australia (http://agbu.une.edu.au/zmeyer).
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Figure 1.—Contour plots
of the simulated genetic co-
variance structures for (A)
data generated according
to a stationary character pro-
cess (CP) model, (B) data
simulated according to a
CP model with arbitrary
and nonstationary correla-
tion (this is a discrete value
matrix rather than a contin-
uous function), (C) data
generated under a random
regression (RR) model with
linear deviations, and (D)
data simulated assuming an
orthogonal polynomial (OP)
model of degree 2.

RESULTS correlation patterns that decrease asymptotically to zero
within the range of the data, and the correlation obtainedSimulations: For the stationary CP data, the best ran-
by both models goes negative (Figure 2).dom regression model according to the BIC criterion

The aim of the second simulated data set was to investi-was characterized by quadratic and linear deviations
gate the behavior of these models in the case of a ratherfor the genetic and environmental parts, respectively.
simple nonstationary genetic correlation structure. TheHigher-order polynomials did not converge to a maxi-
best RR and OP models were the same as for the stationarymum and could not be considered. The best OP model
CP data detailed in the previous paragraph. The RR modelcontained a cubic polynomial for the genetic covariance
dealt very poorly with the nonstationary pattern of theand a quadratic for the environmental part. As expected,
genetic correlation (rc 5 0.10); the correlation was esti-the simulated structure was accurately recovered by the
mated to be very high over all ages. Again, the greaterstationary character process model. Concordance co-
number of parameters in the best-fitting OP model overefficients rc describing the goodness of fit for the vari-
the regression model provided a better fit to the correla-ance and correlation functions are given in Table 1. For
tion structure (rc 5 0.70). Surprisingly, the CP modelthe RR and OP models, the environmental covariance
failed to accurately estimate the nonstationary correlationstructure (including both the variance and correlation)
pattern (Table 1). Our nonstationary extension did notwas very well fitted (rc ≈ 1). The genetic variance was
significantly improve the goodness of fit (BIC 5 24454also well modeled, but both models had trouble dealing
and 24456 for stationary and nonstationary models, re-with the rapidly decreasing genetic correlation function.
spectively; P 5 0.052 for a likelihood-ratio test of l 5 1.0).Although the OP model could better estimate the genetic
However, the goodness of fit of the fitted nonstationarycorrelation (rc 5 0.61 for OP compared to 0.36 for RR),
correlation (rc 5 0.55) is substantially better than thatit contains significantly more parameters than the regres-
of the stationary model (rc 5 0.03), which provides ansion model (17 vs. 10), and both models exhibit similar

behavior. The polynomial structures are unable to handle interesting commentary on model selection criteria. In
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TABLE 1

Goodness-of-fit values for covariance functions estimated from three
different methods on simulated data

Simulated covariance
structure Model VarG CorrG VarE CorrE BIC

Stationary CP CP 0.98 1.0 1.0 1.0 24591
RR 0.96 0.36 0.93 0.87 27414
OP 0.98 0.61 0.98 0.98 26605

Nonstationary CP CP 0.91 0.03 0.99 1.0 24454
RR 0.95 0.10 0.94 0.81 27397
OP 0.84 0.70 0.98 0.97 26628

Random regression CPa 1.0 0.93 0.96 0.93 23817
RR 1.0 0.94 0.99 1.0 23803
OP 1.0 0.94 0.99 1.0 23803

Orthogonal polynomial CPa 0.86 0.10 0.69 0.94 214334
RR 0.30 0.15 0.94 0.90 214371
OP 0.99 0.83 0.99 1.0 214272

Concordance values (see appendix) for covariance functions estimated by three different methods on four
representative covariance structures. The methods are CP, the character process model; RR, the random
regression model; and OP, the orthogonal polynomial model. VarG represents the fit to age-specific genetic
variances; CorrG refers to the fit to genetic correlations between ages; VarE represents the fit to environmental
variances; and CorrE shows the fit to environmental correlations between ages. See text for details of the
simulated covariance structures and details of the best-fitting models for each approach.

a The best-fitting correlation function was a nonstationary CP model.

retrospect, the nonstationarity in this data set was predomi- netic and environmental) remained quite high over time.
Our nonstationary extension of the CP model was success-nantly between extreme ages (ages 1 and 5). It is possible

that more observations per individual are needed to detect ful in providing a good fit to the data. The genetic covari-
ance structure was described by a quadratic variance andsmall to moderate levels of nonstationarity (see fly repro-

duction data). The genetic variance function and environ- nonstationary correlation given by the characteristic func-
tion of the Uniform distribution (Pletcher and Geyermental covariance structure were identical to that for the
1999), and the environmental variance function was linearstationary CP data and were well fit by all the methods
with a Cauchy correlation. The goodness of fit for the(Table 1).
genetic correlation structure was improved substantiallyAll methods did a reasonable job of estimating the
over a stationary model (rc 5 0.74, BIC 5 23819 andgenetic and environmental covariance structures gener-
rc 5 0.93, BIC 5 23817 for the stationary and nonstation-ated according to a random regression model with linear
ary CP models, respectively).deviations. Under this model the correlations (both ge-

Although we have essentially no idea what a typical age-
dependent genetic covariance function might look like,
the data set simulated with an OP structure might be
considered pathological in that the genetic covariance
structure is highly irregular. In fact, the genetic correlation
is negative between early ages but highly positive between
late ages (Figure 1D). Such a structure is, however, typical
for OP models (Kirkpatrick et al. 1994). Convergence
problems hindered our ability to obtain estimates of high
dimensional random regression models, and the best RR
model was not able to accommodate either the simulated
genetic variance or correlation (rc 5 0.30 and rc 5 0.15,
respectively). Both the genetic and environmental covari-
ance structures were described by a quadratic variance
and nonstationary correlation given by the characteristic

Figure 2.—Genetic correlations between age 1 and other function of the Uniform distribution. When compared
for the simulated stationary character process data and fitted

to random regression, the CP model is much better atgenetic correlations obtained from the random regression
estimating the genetic variance function but is slightlymodel with linear deviations and orthogonal polynomial of

degree 3. worse at approximating the correlation structure (Table
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TABLE 2

Results of covariance function estimation on empirical data

Method Genetic Environmental NPCov Log-likelihood BIC

Fly mortality (N 5 955)
11 fixed effects CP Quad-Cauchy Lin-Cauchy 7 2186.0 2247.7

OP Cubic Quadratic 17 2242.1 2338.0
RR Quadratic Quadratic 13 2298.2 2380.4

Fly reproduction (N 5 1109)
11 fixed effects CP Const-Expa Quad-Cauchya 8 494.1 427.5

OP Cubic Quadratic 17 451.4 353.4
RR Quadratic Linear 10 374.0 300.5

Beef cattle growth (N 5 1626)
24 fixed effects CP Lin-Exp Lin-Exp 7 26895.6 27010.0

RR Constant Linear 6 26910.7 27021.4
OP Linear Linear 8 26908.3 27026.4

The best-fitting genetic and environmental covariance functions for three different methods using empirical
data on fruit fly mortality and reproduction and growth in beef cattle. Also presented is the log-likelihood of
the models at their maximum and the BIC model selection criterion. NPCov represents the number of estimated
parameters in the covariance structure for each model. The number of fixed effects reflects the number of
different ages at which observations were obtained, and N is the total number of observations. Quad, quadratic;
Const, constant; Exp, exponential; Lin, linear.

a The best-fitting correlation function was a nonstationary CP model.

1). The environmental covariance is better behaved and This is true for reproductive output as well, and the sig-
nificant nonstationary parameter in the genetic correla-much less of a problem. As seen with the random regres-
tion provides evidence for an increase in the correlationsion simulations, the strong positive correlations across all
between two equidistant ages with increasing age.ages are well fit by all the methods.

Beef cattle: Although differences in fit among the meth-Empirical: Drosophila reproduction and mortality: For age-
ods are less dramatic for beef cattle than for Drosophila,specific mortality and reproduction in Drosophila, the
the character process model again provides a significantlycharacter process model provided a significantly better fit,
better fit (as determined by the BIC criterion) than eitheraccording to the BIC criterion, than either the orthogonal
random regression or orthogonal polynomial methodspolynomial or random regression methods (Table 2). In
(Table 2). The best-fitting model for the genetic part wasfact, the CP models achieved higher likelihoods despite
a linear variance (increasing with age) and an absolutecontaining significantly less parameters than the OP or
exponential correlation (rG(ti, tj) 5 u|ti2tj|)). There wasRR models. For age-specific mortality, the best-fitting
no evidence for nonstationarity in the data. Parametermodel for the genetic covariance was a quadratic variance
estimates and their standard errors for the CP model arewith a Cauchy correlation function (rG(ti, tj) 5 1/(1 1
presented in Table 3, and the fitted genetic covarianceu(ti 2 tj)2)). For fly reproduction the best character process
structure is shown in Figure 3C.model was a constant variance at all ages coupled with a

nonstationary correlation function described by the abso-
lute exponential, rG(ti, tj) 5 u|f(ti)2f(tj)| (see text following

DISCUSSIONEquation 5). Parameter estimates and their standard er-
rors for the CP model are presented in Table 3, and the The quantitative genetic analysis of repeated measures
fitted genetic covariance structures are presented in Figure and other function-valued traits requires the estimation
3, A and B. of continuous covariance functions for each source of

The simplicity of the character process model allows variation in a particular statistical model. Traditionally,
quantitative statements about the predominant attributes statistical geneticists interested in characters that change
of the genetic covariance function. Genetic variance for gradually along some continuous scale have had to settle
Drosophila mortality declines significantly with age, while for models that are either overparameterized (i.e., stan-
genetic variance is constant at all ages for reproductive dard multivariate methods) or oversimplified (e.g., com-
output. For mortality, the parameter in the genetic correla- posite character analysis; Meyer 1998; Pletcher and
tion function was significantly different from zero (P , Geyer 1999). In recent years, however, the introduction
0.0001), suggesting that mortality rates become less geneti- and development of random regression models, orthogo-

nal polynomial models, and models based on stochasticcally correlated as ages become further separated in time.
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TABLE 3

Character process model estimates of genetic and environmental covariance
functions for empirical data

Parameters Genetic Environmental Residual

Fly mortality
u0 0.28 (0.12) 0.53 (0.05) None
u1 0.35 (0.08) 20.03 (0.007)
u2 20.03 (0.007) —
uC 0.10 (0.02) 1.76 (0.29)

Fly reproduction
u0 0.18 (0.03) 0.10 (0.02) None
u1 — 20.01 (0.01)
u2 — 20.002 (0.001)
uC 0.26 (0.15) 4.0 (2.0)
l 20.63 (0.30) 0.51 (0.13)

Beef cattle growth
u0 0.0001a (186.3) 0.0001a (257.8) 1000.8 (85.35)
u1 4.12 (6.95) 38.94 (7.77)
uC 0.99 (0.02) 0.99 (0.003)

Parameter estimates (and standard errors) for the best-fitting character process models for empirical data
on fruit fly mortality and reproduction and growth in beef cattle. u0, u1, and u2 represent parameters of the
variance function such that a quadratic variance is represented as v2(t) 5 u0 1 u1t 1 u2t 2. In cases where the
best-fitting model was constant or linear, the appropriate ui are omitted. uC and l are parameters of the
correlation function. A residual term is not always added in the model.

a Parameter estimate is at the lower boundary and asymptotic standard errors may not be reliable.

process theory (i.e., the character process model) have mentioned previously, for random regression models the
entire covariance structure is implicitly determined by theprovided important alternatives. Other types of random

regression models (e.g., nonlinear models as suggested by shapes of the regression polynomials, and covariance sur-
faces described by orthogonal polynomials have a fixedLindstrom and Bates 1990 and Davidian and Giltinan

1995) may prove useful, but they are currently difficult to relationship between variance and correlation. This limita-
tion is exemplified in the analysis of growth in beef cattle.implement.

Through extensive investigation of a variety of simulated For the genetic deviation, the best-fitting RR model in-
cluded only a random intercept. This implies not onlycovariance structures and empirical data, we find that

under most conditions the CP models provide the best that the variance is considered constant over time but also
that the correlation is constant and equal to 1 across alldescription of the underlying covariance structure. It is

clear from the simulation results that the CP model is the ages, which is probably not appropriate (Figure 3C).
Applying the same argument to the fertility data in Dro-only method that adequately captures a correlation that

declines rapidly to zero as character values become further sophila, the best-fitting CP model for the genetic part
was a constant variance with a rather rapid decline inseparated in time. Both random regression models and

orthogonal polynomials have noticeable problems approx- correlation between increasingly separated ages (Table 3).
Such a combination is simply not possible under the RRimating such a structure (Table 1, stationary CP data;

Figure 2). Polynomials do not have asymptotes, and the or OP methods. It is also likely that the separation of
variance and correlation was a major factor contributingrapid decline in correlation tends to force both methods

to estimate correlations that are strongly negative within to the ability of the CP model to reasonably estimate the
genetic variation with a much smaller number of parame-the range of the data. Although the characteristics of

covariance functions for natural organisms remain gener- ters (4 parameters) than random regression (10 parame-
ters) or orthogonal polynomial (17 parameters) modelsally unknown, this is a serious limitation as asymptotic

behavior in covariances/correlations are to be expected (Table 2).
The data sets we examined were small in comparison(Pletcher and Geyer 1999). Other parameterizations of

the RR models (e.g., using orthogonal polynomials in the to those commonly analyzed in agricultural and breed-
ing contexts. Using extremely large data sets, compli-regression) may prove more useful in this regard. On the

other hand, RR and OP models work quite well when cated covariance and correlation models may be of
greater use, and the random regression and orthogonalthe correlation structure remains high over time (see Ta-

ble 1, environmental correlation in CP simulated data). polynomial methods may begin to show an advantage.
Large data sets would also relieve the convergence prob-A further advantage of the CP models appears to be the

ability to model the variance and correlation separately. As lems we experienced with high-order random regres-
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several important limitations of the process models that
suggest avenues for further development. First, addi-
tional ways of relaxing the stationarity assumption
(Pletcher and Geyer 1999) without greatly increasing
the number of parameters are needed. Although not
appropriate in all situations, a promising direction pro-
posed by Nunez-Anton and Zimmerman (2000) has
been studied here and seems to offer reasonable flexi-
bility in practice. Second, CP models require the manip-
ulation (inversion, factorization, etc.) of matrices whose
dimensions are proportional to the number of ages in
the data set, regardless of the size of the model itself
(Meyer 1998). A method of reparameterization, similar
to that used for RR and OP models (Meyer 1998),
would be useful. Third, a method for estimating the
eigenfunctions of covariance functions used by the pro-
cess models would provide insight into patterns of ge-
netic constraints across ages (Kirkpatrick et al. 1990;
Kirkpatrick and Lofsvold 1992).

Last, the genetic analysis of two or more function-
valued traits is an important goal. Generalization of
regression models to multitrait analyses is straightfor-
ward and has already been used, for instance, to analyze
age-dependent milk production, fat, and protein con-
tent in dairy cattle (Jamrozik et al. 1997a). Bivariate
character process models might be implemented by de-
fining a parametric cross-covariance function between
the two traits, but appropriate forms for this function
are yet to be discovered.

W. Hill, N. Barton, and two anonymous reviewers provided valuable
comments on the manuscript. Thanks to J. Curtsinger and A. Khazaeli
for generously providing published and unpublished data. F.J. thanks
the INRA for support during this project.
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where the y’s now refer to the actual and estimated
variances rather than correlations.

APPENDIX: GOODNESS OF FIT OF THE The coefficient rc is directly interpretable as a concor-
COVARIANCE STRUCTURE dance coefficient between observed and predicted val-

ues. It directly measures the level of agreement (concor-The concordance correlation coefficient rc described
dance) between yij and ŷij, and its value is reflected inby Vonesh et al. (1996) was used in the simulation study
how well a scatter plot yij vs. ŷij falls about the line identity.to evaluate the goodness of fit for both the variance
The possible values of rc are in the range 21 # rc # 1,and correlation functions estimated by the models when
with a perfect fit corresponding to a value of 1 and acompared to the simulated structure. For the correla-

tion structure, for instance, we consider lack of fit to values #0.


